

Probabilistic fatigue damage prognosis and uncertainty management

Yongming Liu Clarkson University

Sankaran Mahadevan Vanderbilt University

Aviation Safety Program Technical Conference November 17-19, 2009 Washington D.C.

Outline

- Problem Statement
- Background
- IVHM milestones being addressed
- Approach
- Results
- Conclusions
- Future Plans

Problem Statement

- Physics-based probabilistic fatigue damage prognosis methodology
 - Existing models are not suitable for concurrent prognosis and diagnosis analysis
- Comprehensive uncertainty management framework for prognostic algorithms
 - A comprehensive uncertainty quantification, propagation and updating scheme is lacking for prognostic algorithms
- Rigorous model verification and validation methodology and its associated metrics
 - No available prognosis metrics for time-dependent RUL prediction
- Experimental testing to demonstrate, validate, and compare fatigue damage prognostic algorithms
 - Multi-level experimental study for hypotheses verification, prediction validation, and application demonstration

Validation and uncertainty management of prognostic algorithms

Validation metrics and criteria

Stochastic crack growth rate

curve

IVHM milestones being worked

IVHM 3.3.2

- Guidelines for fidelity of prognostic estimates, "...describes the appropriate level of fidelity for physics-based models for prognostics on subsystems and components."

• IVHM 3.3.3

- Methodology for assessing the performance of prognostic algorithms and methods, "...describes a rigorous statistical methodology for assessing the quality of prognostic algorithms."

IVHM 3.3.5

- Assessment of the ability to perform prognostic reasoning for at least four of the adverse events listed in Table 2 (as specified in the RTIP) with performance improvements ...

IVHM 1.2.3.7

 "Validated methodologies for prognostics uncertainty management and representation... shrink the uncertainty bounds of prediction of damage progression by 50% as measured from the initial prediction to the end of life".

This is a three year award and currently starting year 2.

A multi-scale approach for structural fatigue damage prognosis

Model development

$$da = \frac{ctg\theta}{2}d\delta = Cd\delta \tag{1}$$

Crack Tip Opening Displacement
$$\delta = \frac{4K^2}{\pi E \sigma_y} = \lambda \sigma^2 a$$
 $(\lambda = \frac{4}{E \sigma_y})$

$$(\lambda = \frac{4}{E\sigma_{v}}) \tag{2}$$

Instantaneous crack growth rate

$$\frac{1}{C\lambda a}\frac{da}{dt} = \frac{2\sigma}{1 - C\lambda\sigma^2}\frac{d\sigma}{dt}$$
(3)

General formulation of the model

$$\dot{a} = H(\dot{\sigma}) \cdot H(\sigma - \sigma_{ref}) \cdot \frac{2C\lambda}{1 - C\lambda\sigma^2} \cdot \dot{\sigma} \cdot a \tag{4}$$

Schematic representation of crack tip geometry

Hypotheses 1: crack growth is controlled by the interaction of forward and reversed plastic zone, which are influenced by crack closure

Hypotheses 2: crack growth in not uniformly distributed within one cycle and remains constant during majority of the loading history

In-situ fatigue testing under optical microscope and in SEM

Nikon metallurgical microscope

In-situ optical microscope fatigue testing

Controller and PC

Jeol 7400-F SEM

In-situ SEM fatigue testing

Forward and reversed plastic zone measurement

• In-situ optical microscope testing is used to measure the plastic zone size within one loading cycle

0.02

- Image correlation technique is used to estimate the crack tip strain field
- Crack closure hypothesis is verified for Al-7075-T6

exx [1] - 15 filter

-0.02

Ongoing work to include the crack blunting mechanism

High resolution crack tip deformation and growth observation

- Both crack deformation and growth can be observed
- Crack only grows during part of the loading path and not in the unloading path
- Ongoing work focuses on the imaging analysis (registration and mapping) and additional testing under different crack growth rates

Comparison with experimental data for model prediction

State-space model for concurrent structural-material fatigue prognosis

Coupled hierarchical state-space model

Structural dynamics

$$m x + n x + kx = f(t)$$

Fatigue crack growth

$$a = H(\sigma)H(\sigma - \sigma_{ref}) \frac{2C\lambda}{1 - C\lambda\sigma^2} \sigma a$$

$$H(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$$
Previous reversed plastic zone

during reloading

$$\begin{cases} x_1 = x_2 \\ x_2 = (-k(x_3)/m)x_1 + (-n/m)x_2 + f(t)/m \\ x_3 = H(g(x_2))H(g(x_1) - \sigma_{ref}) \frac{2C\lambda}{1 - C\lambda g(x_1)^2} g(x_2)x_3 \\ y = q(x_1, x_3) \end{cases}$$

Structural damage prognosis integrating health and usage monitoring systems

Framework of the proposed uncertainty management methodology

- A sound uncertainty management methodology
 - Uncertainty Quantification (UQ)
 - **Uncertainty Propagation (UP)**
 - **Uncertainty Updating (UU)**
 - Risk Assessment (RA)

Uncertainty quantification

- Physical variability
 - Loading (multi-axial variable amplitude)
 - Material Properties
- Data uncertainty
 - Sparseness of data available to quantify material property statistics
 - Measurement uncertainty (final crack size)
- Model uncertainty/errors
 - Finite element discretization error (Richardson extrapolation)
 - Gaussian process surrogate model prediction
 - Coefficients of selected crack growth model
 - Model form error terms
- Uncertainty in inspection
 - Crack detected → Use crack size and measurement error in inference
 - No crack detected → use POD (Probability of detection) in inference

Advanced surrogate modeling for uncertainty propagation

Basic idea: model the output *Y* as a Gaussian process which is indexed by the inputs **x**.

Training: Given m training points $\mathbf{x}_1, ..., \mathbf{x}_m$, with corresponding outputs $\mathbf{Y} = [Y(\mathbf{x}_1), ..., Y(\mathbf{x}_m)]^T$, the joint distribution of Y is defined by

$$\mathbf{Y} \sim N_m[\mathbf{f}^T(\mathbf{x})\boldsymbol{\beta}, \lambda \mathbf{R}]$$

 $\mathbf{f}^{\mathrm{T}} - q$ basis functions for the trend -- linear or quadratic

 β – coefficients of the regression trend

 λ – process variance, $\lambda = \sigma^2$

Remaining life prediction under uncertainty

Suppose the following information is known:

$$\begin{cases} (a) : g(x, y) = 0 \\ (b) : ||x|| = \beta \end{cases}$$

Inverse FORM (IFORM) is to find a solution of *y* to satisfy the above constraints

vector x : random variables (e.g., material properties, load, structural geometries, etc.) vector y : index variables (e.g., time, coordinates, variables with small randomness, etc.)

Efficient probabilistic fatigue life prediction using IFORM

- No sampling required and suitable for both ground-based and on-line prognosis
- Directly calculate the RUL at a given confidence/reliability level

$$g(A, a_i, N) = \log \left(\int_{a_i}^{a_c} \frac{1}{Ab^R \left[\Delta K - \Delta K_{th} \right]^m} da \right) - \log(N)$$

Iterative calculation using Newton-Raphson method

Limit state function
$$g(A,a_{i},N) = \log \left(\int_{a_{i}}^{a_{c}} \frac{1}{Ab^{R} \left[\Delta K - \Delta K_{th} \right]^{m}} da \right) - \log(N) \begin{cases} \nabla_{x}g(x) = \begin{cases} \frac{1}{A} & 1 \\ -\frac{\frac{1}{Ab^{R} \left[\Delta K - \Delta K_{th} \right]^{m}}}{Ab^{R} \left[\Delta K - \Delta K_{th} \right]^{m}} da \end{cases} \end{cases}$$
Iterative calculation using Newton-Raphson method
$$\frac{\partial g}{\partial N} = -\frac{1}{N}$$

$$\begin{cases} X_{k+1} \\ N_{k+1} \end{cases} = \begin{cases} X_k + a_1 \left(\frac{\left[\nabla_x g(x, N) \bullet x \right] - g(x, N)}{\left\| \nabla_x g(x, y) \right\|^2} \nabla_x g(x, N) - X_k \right) + a_2 \left(-X_k - \beta_{target} \frac{\nabla_x g(x, N)}{\left\| \nabla_x g(x, N) \right\|} \right) \\ N_k + a_2 \frac{\left[\nabla_x g(x, N) \bullet x \right] - g(x, N) + \beta_{target} \left\| \nabla_x g(x, N) \right\|}{\frac{\partial g(x, N)}{\partial N}} \end{cases}$$

An example for probabilistic life prediction – Al 7075

- Proposed IFORM method capture the trend and the scatter in the experimental data
- Give similar prediction accuracy compared to that of the direct Monte Carlo method
- IFORM is very efficient compared to the direct Monte Carlo method

Liu, Y., Mahadevan, S., "Probabilistic fatigue life prediction using an equivalent initial flaw size distribution", International Journal of Fatigue, Vol. 31, Issue 3, pp. 476-487, 2009. Xiang, Y., Lu, Z., **Liu, Y.**, "Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: Uniaxial loading", International Journal of Fatigue, 2009. (in press)

Maximum Relative Entropy approach for uncertainty updating

- Uncertainty updating is a critical component for the overall uncertainty management
 - Update our belief using observations of the system response and reduce prognosis scatter band
- Classical Bayesian method is widely used $p(\theta) \propto \mu(\theta) \cdot \mu(x' \mid \theta)$
 - Difficult to handle moment data [1], e.g. $\langle \sqrt{\theta} \rangle$
- Maximum Relative Entropy (MRE) approach seeks the posterior under the moment constraints

maximize
$$I(p:\mu) = -\int dx d\theta \cdot p(x,\theta) \log(p(x,\theta)/\mu(x,\theta))$$
 under constraints $c_2 : \int dx d\theta \cdot p(x,\theta)g(\theta) = \langle g(\theta) \rangle = G$

Posterior from MRE approach is a generalized Bayesian solution

$$p(\theta) \propto \mu(\theta) \cdot \mu(x' \mid \theta) \cdot e^{\beta \cdot g(\theta)}$$

[1] A. Giffin and A. Caticha (2007). Updating probabilities with data and moments. In K. Knuth (Ed.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings, 954:74

Clarkson

Rigorous model verification and validation using prognosis metrics

- Visual graphical comparison is useful but does not provide quantitative judgment of the investigated prognostic algorithms
- Classical metrics
 - Based on statistical analysis, a large number of samples are required
 - Difficult to describe the prognosis performance over time
- Prognostics-based metrics [1]
 - Designed to describe how well an algorithm improve over time
 - Not based on statistics, no sample required
 - 4 metrics: Prognostic Horizon (PH), α - λ accuracy, Relative Accuracy (RA), Convergence
- Demonstration using experimental testing data [2-3]
 - Experimental data: Al 2024-T3 in Virkler's and McMaster's dataset
 - Physics model: fatigue crack growth analysis
 - Probabilistic prognosis: MRE and Bayesian
- [1] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel (2009). Evaluating algorithm performance metrics tailored for prognostics. IEEE Aerospace conference, 7-14 March 2009, pp. 1-13.
- [2] Guan, X., Jha, R., Liu, Y., "Probabilistic fatigue damage prognosis using maximum entropy approach", Journal of Intelligent Manufacturing, 2009. (accepted)
- [3] Guan, X., Liu, Y., Saxena, A., Celaya, J., Goebel, K., "Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison", annual conference of the prognostics and health management society, San Diego, CA, 2009.

Prognosis metrics – Virkler's dataset

			(Conve	ergen	се			
Metric (relative error)	0.35		ı	ι	ι		RUL media		
	0.3	-					RUL median (MRE) Center point (Bayesi Center point (MRE)		ian)
	0.25	3	\				•		
	0.2	-		6	0				-
	0.15	~							-
	0.1	-			•		8_		-
	0.05	-							9
	0	/	r	r	г	r	г	r	9
			4	6	8 Time	10 index	12	14	x 10 ⁴

Metric	MRE	Bayesian	
MAPE	8.66	10.93	
Average Bias (cycles)	10956.27	14051.92	
STD(cycles)	7628.77	9115.78	
MSE(cycle ²)	178.23 x 10 ⁶	280.5 x 10 ⁶	
PH _{α=10%}	183283	169451	
RA _{λ=0.4}	0.92	0.89	
CRA _{λ=0.4}	0.89	0.87	
Convergence (RA)	74365.72	77349.24	

Prognosis confidence bounds estimation (Virkler's dataset)

- Both MRE and Bayesian can narrow down the confidence bounds using additional observations
- Similar conclusions can be seen from the McMaster's data
- Differences between MRE and Bayesian are case dependent, especially on the choice of prior distribution during the updating process
- Additional theoretical and experimental work are ongoing for new validation and new metrics development

Conclusions

- A general physics-based probabilistic fatigue damage prognosis methodology has been developed
- Novel small time scale fatigue formulation for concurrent multiscale fatigue damage modeling
- Comprehensive uncertainty quantification framework including various modeling and measurement errors
- Advanced surrogate modeling based on Gaussian Process (GP)
- Efficient probabilistic life prediction method for both ground-based and online prognosis
- Maximum Relative Entropy (MRE)/Bayesian updating to shrink the confidence bounds in the life prediction
- Rigorous prognostics-based metrics for quantitative algorithm performance evaluation
- Advanced in-situ optical and SEM testing for hypotheses validation

Next Steps

- Extend the developed fatigue modeling to general multiaxial random loading
- Develop a general computational methodology for the structural level fatigue prognosis based on the developed material model
- Develop new validation metrics for probabilistic prognostic algorithm comparison
- Global sensitivity analysis to investigate the effect of different uncertainty sources on prognosis
- Develop a general methodology to handle the uncertainty from unknown future loading and investigate its impact on the health management
- Extend the Bayesian framework for loading updating based on usage monitoring system
- Continue the experimental testing to supply validation data and support the model development